

Biasing and the search for primordial non-Gaussianity beyond the local type

Jerome Gleyzes, JPL/Caltech

Surveys for Cosmology

Many new surveys to come online: LSST, WFIRST, EUCLID,...

What's causing the accelerated expansion of the Universe?

Cosmological constant?

Dark Energy?

Modifications of General Relativity?

And more

Equivalence Principle (EP)

Do all objects fall the same way?

Initial conditions

Is the distribution initially Gaussian?

Prediction of simplest inflation models

Non Gaussianity and Inflation

Scale dependent bias

Equilateral non-Gaussianity

Why study non-Gaussianity?

$$\Phi = \Phi_{\rm G} + f_{\rm NL}^{\rm Loc}(\Phi_{\rm G}^2 - \langle \Phi_{\rm G} \rangle^2)$$
 Consistency relation

$$\longrightarrow f_{\mathrm{NL}}^{\mathrm{loc}} \longrightarrow -\frac{5}{12}(n_s-1)$$
 Maldacena '02

Single field inflation

Creminelli & Zaldarriaga '04

Multi-field inflation

Why study non-Gaussianity?

$$ext{Prob}(|f_{ ext{NL}}^{ ext{Loc}}|>1)\gtrsim 50\%^*$$
 with de Putter and Doré `arXiv:1612.05248`

*: 2-field models with spectator field

Measuring PNG from surveys

♦ CMB: Bispectrum

$$\sigma(f_{\rm NL}^{
m Loc}) \sim 5$$

♦ Galaxy surveys: scale-dependent bias

Single field inflation

Multi-field inflation

Multi-field inflation

Scale-dependent bias

♦ Local PNG

$$\mathcal{M}(q) \equiv \frac{2q^2T(q)D(z)}{3\Omega_m H_0^2}$$

$$b_{\rm NG}(q) = 2 f_{\rm NL}^{\rm Loc} (b_{\delta} - 1) \delta_c \mathcal{M}^{-1}(q) \sim \frac{1}{q^2 T(q)}$$

♦ Equilateral PNG

Typical size of halos

$$b_{\rm NG}(q) = 6 f_{\rm NL}^{\rm Eq} (b_{\delta} - 1) \delta_c (q R_*)^2 \mathcal{M}^{-1}(q) \sim \frac{1}{T(q)}$$

Biasing and PNG

with de Putter, Green and Doré arXiv:1612.06366

♦ Generalized model of bias McDonald & Roy '09, Assassi et al '15

$$\delta_h = b_\delta \delta + b_{\rm NG}(q)\delta + F_{\rm nonlocal}[\nabla^2 \delta] + F_{\rm nonlinear}[\delta]$$

$$[b_{q^2}(qR_*)^2 + b_{q^4}(qR_*)^4] \delta$$

Seen in simulations Chan et al '12, Baldauf et al '12

♦ Evolution or PNG?

$$T(q) \sim 1 + T_1 q^2 + T_2 q^4$$

$$b_{\rm NG}^{\rm Loc} \sim q^{-2}$$

$$b_{\rm NG}^{\rm Eq} \sim c + c_1 q^2 + \cdots$$

Equilateral PNG and bias

Equilateral PNG and bias

What is helping us

$$F_{\text{nonlocal}}[\nabla^2 \delta] \longrightarrow R_*^{-1} > k_{\text{max}}$$

$$T(q) \longrightarrow k_{\text{eq}} \sim 10^{-2} h/\text{Mpc} < k_{\text{max}} \sim 10^{-1} h/\text{Mpc}$$

Beating cosmic variance

Conclusions

Broken in multi-field inflation, with $f_{
m NL}^{
m Loc} \sim 1$ for spectator fields

Equilateral PNG is degenerate with evolution

Bispectrum more appropriate for PNG beyond local